Franklin Magic Squares of order 4k
It turns out that Franklin Magic Squares exist except for n=4 and n=12.
An extensive report about general construction methods for Franklin Squares
is found in an internal TUe report, in pdf format.
It also describes the brute force search for a 12 by 12 square which failed, thereby
proving that no such square exists. It takes merely 160 hours of computing time.
A program in C is available at gen12x.c. I have
given a presentation about Franklin magic squares at the Dutch Cube Day (Eindhoven, October 14, 2007).
Here you find the slides in PDF-format.
The report has many examples of nice Franklin or almost Franklin Squares, some of which
can be found below.
Magic square built by 4x4 perfect blocks
1 |
140 |
109 |
40 |
9 |
132 |
101 |
48 |
49 |
92 |
61 |
88 |
143 |
6 |
35 |
106 |
135 |
14 |
43 |
98 |
95 |
54 |
83 |
58 |
36 |
105 |
144 |
5 |
44 |
97 |
136 |
13 |
84 |
57 |
96 |
53 |
110 |
39 |
2 |
139 |
102 |
47 |
10 |
131 |
62 |
87 |
50 |
91 |
3 |
138 |
111 |
38 |
11 |
130 |
103 |
46 |
51 |
90 |
63 |
86 |
141 |
8 |
33 |
108 |
133 |
16 |
41 |
100 |
93 |
56 |
81 |
60 |
34 |
107 |
142 |
7 |
42 |
99 |
134 |
15 |
82 |
59 |
94 |
55 |
112 |
37 |
4 |
137 |
104 |
45 |
12 |
129 |
64 |
85 |
52 |
89 |
17 |
124 |
125 |
24 |
25 |
116 |
117 |
32 |
65 |
76 |
77 |
72 |
127 |
22 |
19 |
122 |
119 |
30 |
27 |
114 |
79 |
70 |
67 |
74 |
20 |
121 |
128 |
21 |
28 |
113 |
120 |
29 |
68 |
73 |
80 |
69 |
126 |
23 |
18 |
123 |
118 |
31 |
26 |
115 |
78 |
71 |
66 |
75 |
|
|
|
|
|
|
|
|
|
|
|
|
4x4 blocks are pan-diagonal, contain complementary entries;
lines of 4 entries, starting at odd row/column are magic;
each 8x8 subsquare is Franklin.
Franklin 12x12, except for magic half columns
4 |
143 |
10 |
139 |
78 |
61 |
5 |
142 |
11 |
133 |
76 |
68 |
105 |
38 |
99 |
42 |
31 |
120 |
104 |
39 |
98 |
48 |
33 |
113 |
52 |
95 |
58 |
91 |
126 |
13 |
53 |
94 |
59 |
85 |
124 |
20 |
129 |
14 |
123 |
18 |
55 |
96 |
128 |
15 |
122 |
24 |
57 |
89 |
28 |
119 |
34 |
115 |
102 |
37 |
29 |
118 |
35 |
109 |
100 |
44 |
81 |
62 |
75 |
66 |
7 |
144 |
80 |
63 |
74 |
72 |
9 |
137 |
64 |
83 |
70 |
79 |
138 |
1 |
65 |
82 |
71 |
73 |
136 |
8 |
117 |
26 |
111 |
30 |
43 |
108 |
116 |
27 |
110 |
36 |
45 |
101 |
16 |
131 |
22 |
127 |
90 |
49 |
17 |
130 |
23 |
121 |
88 |
56 |
93 |
50 |
87 |
54 |
19 |
132 |
92 |
51 |
86 |
60 |
21 |
125 |
40 |
107 |
46 |
103 |
114 |
25 |
41 |
106 |
47 |
97 |
112 |
32 |
141 |
2 |
135 |
6 |
67 |
84 |
140 |
3 |
134 |
12 |
69 |
77 |
|
|
|
|
|
|
|
|
|
|
|
|
Instead of magic half columns, we have magic third columns;
complementary entries reflect along horizontal midline.
Franklin Square of order 20
1 |
395 |
21 |
320 |
141 |
240 |
326 |
180 |
341 |
40 |
86 |
360 |
101 |
295 |
181 |
280 |
201 |
160 |
261 |
80 |
386 |
20 |
366 |
95 |
246 |
175 |
61 |
235 |
46 |
375 |
301 |
55 |
286 |
120 |
206 |
135 |
186 |
255 |
126 |
335 |
2 |
394 |
22 |
319 |
142 |
239 |
327 |
179 |
342 |
39 |
87 |
359 |
102 |
294 |
182 |
279 |
202 |
159 |
262 |
79 |
388 |
18 |
368 |
93 |
248 |
173 |
63 |
233 |
48 |
373 |
303 |
53 |
288 |
118 |
208 |
133 |
188 |
253 |
128 |
333 |
11 |
385 |
31 |
310 |
151 |
230 |
336 |
170 |
351 |
30 |
96 |
350 |
111 |
285 |
191 |
270 |
211 |
150 |
271 |
70 |
396 |
10 |
376 |
85 |
256 |
165 |
71 |
225 |
56 |
365 |
311 |
45 |
296 |
110 |
216 |
125 |
196 |
245 |
136 |
325 |
12 |
384 |
32 |
309 |
152 |
229 |
337 |
169 |
352 |
29 |
97 |
349 |
112 |
284 |
192 |
269 |
212 |
149 |
272 |
69 |
397 |
9 |
377 |
84 |
257 |
164 |
72 |
224 |
57 |
364 |
312 |
44 |
297 |
109 |
217 |
124 |
197 |
244 |
137 |
324 |
14 |
382 |
34 |
307 |
154 |
227 |
339 |
167 |
354 |
27 |
99 |
347 |
114 |
282 |
194 |
267 |
214 |
147 |
274 |
67 |
398 |
8 |
378 |
83 |
258 |
163 |
73 |
223 |
58 |
363 |
313 |
43 |
298 |
108 |
218 |
123 |
198 |
243 |
138 |
323 |
3 |
393 |
23 |
318 |
143 |
238 |
328 |
178 |
343 |
38 |
88 |
358 |
103 |
293 |
183 |
278 |
203 |
158 |
263 |
78 |
387 |
19 |
367 |
94 |
247 |
174 |
62 |
234 |
47 |
374 |
302 |
54 |
287 |
119 |
207 |
134 |
187 |
254 |
127 |
334 |
4 |
392 |
24 |
317 |
144 |
237 |
329 |
177 |
344 |
37 |
89 |
357 |
104 |
292 |
184 |
277 |
204 |
157 |
264 |
77 |
389 |
17 |
369 |
92 |
249 |
172 |
64 |
232 |
49 |
372 |
304 |
52 |
289 |
117 |
209 |
132 |
189 |
252 |
129 |
332 |
5 |
391 |
25 |
316 |
145 |
236 |
330 |
176 |
345 |
36 |
90 |
356 |
105 |
291 |
185 |
276 |
205 |
156 |
265 |
76 |
390 |
16 |
370 |
91 |
250 |
171 |
65 |
231 |
50 |
371 |
305 |
51 |
290 |
116 |
210 |
131 |
190 |
251 |
130 |
331 |
13 |
383 |
33 |
308 |
153 |
228 |
338 |
168 |
353 |
28 |
98 |
348 |
113 |
283 |
193 |
268 |
213 |
148 |
273 |
68 |
399 |
7 |
379 |
82 |
259 |
162 |
74 |
222 |
59 |
362 |
314 |
42 |
299 |
107 |
219 |
122 |
199 |
242 |
139 |
322 |
15 |
381 |
35 |
306 |
155 |
226 |
340 |
166 |
355 |
26 |
100 |
346 |
115 |
281 |
195 |
266 |
215 |
146 |
275 |
66 |
400 |
6 |
380 |
81 |
260 |
161 |
75 |
221 |
60 |
361 |
315 |
41 |
300 |
106 |
220 |
121 |
200 |
241 |
140 |
321 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
True Franklin Magic Square of order 20;
magic half rows, magic half columns, magic bent-diagonals;
complementarity along horizontal midline